

Research on Capillary Hydrodynamics at the Institute of Fluid Mechanics and Heat Transfer (ISW) in Graz

Research Team name: Graz University of Technology, ISW Presenter name: Günter Brenn

Team Presentation – Annual Workshop, COST Action MP1106 Dublin, September, 2012

nstitute of Fluid Mechanics and Heat Transfer

Team's general info

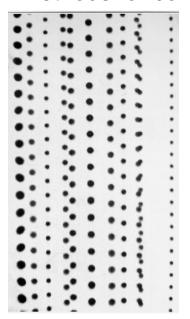
Research Team Name: Graz University of Technology, ISW

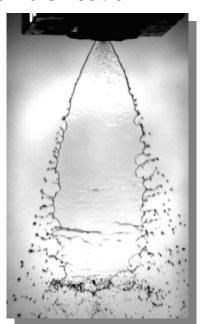
Number of team members: 17 (including workshop and admin)

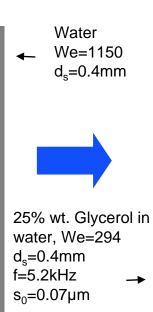
Brief description of team:

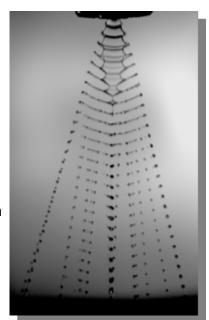
Team leader: Günter Brenn, Aerospace Engineer

- 1 associated professor
- 1 assistant professor
- 4 PhD. students
- 1 MSc. student
- 4 technicians
- 2 Mechanical Engineers
- 1 Mathematician
- 1 Chemical Engineer

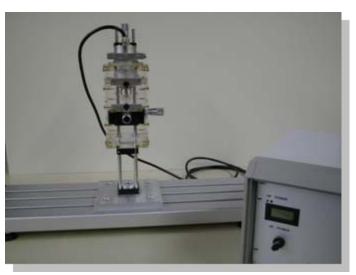





Relevance to MP1106


Research interests related to MP1106:

- Stability of capillary systems
- Shape oscillations of drops
- Techniques for controlled spray formation
- Transport across interfaces
- Methods for controlled emulsification



Lab description

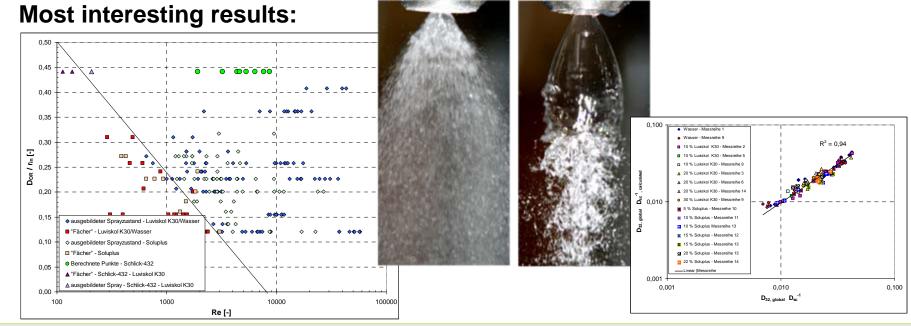
Basic facilities, equipment, devices etc:

- Laser-Doppler-based measuring equipment
- Shear viscosimeters (capillary and rotary)
- Elongational rheometers
- Acoustic levitator for single-particle/drop investigations
- Access to the laboratory equipment of the Research Center Pharmaceutical Engineering

Projects

Project #1:

Title: Development of a technique for selecting pressure-swirl atomizers


appropriate for spraying of polymer solutions

Duration: 3 years

Funding organization: (bilateral project with BASF – The Chemical Company)

People involved and their function: 1 PhD student, 3 technicians

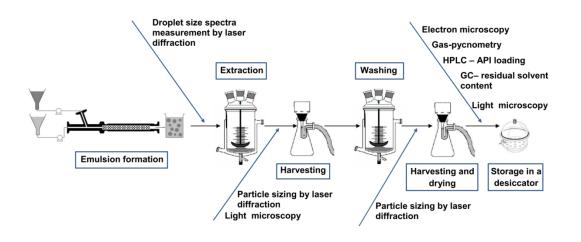
Facilities/equipment: Spray test rig

Institute of Fluid Mechanics and Heat Transfer

Projects

Project # 2:

Title: Micro-particle formation with the emulsification-extraction method


Duration: 3 years

Funding organization: FFG in Austria in the COMET program (RCPE)

People involved and their function: 1PhD student, 1 lab assistant

Facilities/equipment: Lab equipment of RCPE – from GC, HPLC to diffract. sizer

Most interesting results: Particle properties

Morphological properties of particles as functions of relevant quantities

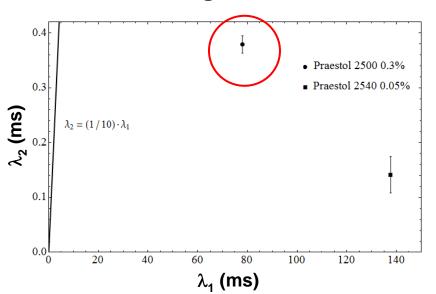
Institute of Fluid Mechanics and Heat Transfer

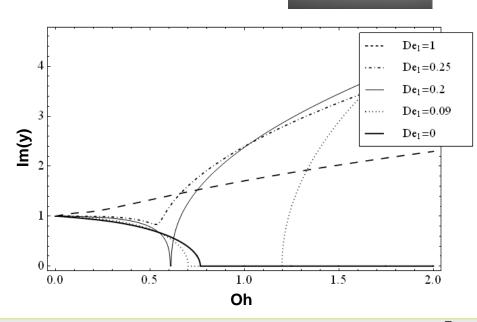
Projects

Project #3:

Title: Shape oscillations of viscoelastic drops used for determining the

polymer deformation retardation time


Duration: undetermined


Funding organization: None so far

People involved and their function: 1 MSc student

Facilities/equipment: Acoustic levitator, shear rheometer

Most interesting results:

nstitute of Fluid Mechanics and Heat Transfer

Topics for Research Proposal

#1 Topic

Title: Polymeric time scales in viscoelastic flows

Promotion images & text: Develop techniques based on fluid mechanics for determining polymeric time scales in viscoelastic liquids (elongational rheometry, shear rheometry, drop oscillations)

Duration: 3 years

Expertise required: Polymer physics, polymer chemistry, capillary hydrodynamics

Facilities/equipment required: Rheometry, determination polymer molecular mass, determination polymer conformation

Institute of Fluid Mechanics and Heat Transfer

Topics for Research Proposal

#2 Topic

Title: "Monodisperse" emulsification at high concentrations

Promotion images & text: None

Duration: 3 years

Expertise required: Macromolecular chemistry, physics,

capillary hydrodynamics, light scattering

Facilities/equipment required: High-pressure devices (in general

emulsification apparatus), drop sizing in liquids at high concentrations, shear

rheometry

Thank you for your attention