

illycaffè spa - Trieste – ITALY Research & Scientific Coordination Luciano Navarini

illycaffè spa - Research & Scientific Coordination Team Leader: Luciano Navarini, Chemist

- 2 Chemists
- 1 Chemical Engineer
- Pharmaceutical Chemistry Technologists
- 1 Technician

Sensory Analysis
Consumer Science
Physiology of Perception

Food Chemistry
Analytical Chemistry
Physical Chemistry

ISO 17025 accreditated laboratories

Relevance to MP1106

- Food Foam Characterization (focus on coffee)
- Foam mouthfeel perception & sensory
- Food Oral cavity interactions
- Interfacial Properties (focus on coffee)

2 Labs

- •Sample preparation tools
- •GC MS
- •LC MS/MS
- •GC sniffing port
- •HPLC/UPLC
- Physico-chemical characterization
- Extraction/Isolation/Purification
- Wet chemistry

illy

Test room

- •Sample preparation tools
- •12 booths
- •ISO standards
- •PC data acquis./process.
- Panel management

Scientific Cooperation

illy

Coffee interfacial properties: oral cavity perspective

Fig. 2 Pure water (contact angle $97^{\circ}\pm1^{\circ}$, upper left), human whole stimulated saliva (upper right), drip coffee (bottom left), and espresso (bottom right) are compared on the Teflon surface used by Ferrari et al.⁴⁰

Fig. 2. Interfacial tension (mN/m) as a function of time of Brazilian roasted coffee oil samples: Abra1 (\blacksquare) and Rbra (\blacktriangle) .

Food Hydrocolloids 21 (2007) 1374-1378

Fig. 3. Dynamic surface tension at *espresso* coffee—air interface of *arabica* beverage at T = 20 °C using the MBP (\bigcirc) and the PD methods (\bigcirc).

Fig. 3. Dynamic surface tension of *espresso* coffee (\bullet *ristretto*; \blacksquare regular; and \triangle *lungo*) and of other types of coffee preparations: soluble coffee (\bullet c = 10 g/l, \bullet c = 40 g/l) and drip coffee (\blacktriangledown).

Food Biophysics (2011) 6:335-348

18 (2004) 387-393 Colloids and Surfaces A: Physicochem. Eng. Aspects 365 (2010) 79-82

Milk foam and Milk steam-frothing

Joint Project

Udine University ITALY

Rampini et al., 2006

Joint Project

Trento ITALY

Inter-individual differences in food aroma perception by Nose-Space analysis

PCA graphic discrimination of panelists. The two types of symbols denote different genders (circle=female, square=male)

Romano et al., FOP 2012

Topics for Research Proposal

Formation
Structure & Modelling
Stability
Rheology
Aroma Release

Physiology
Sensory
Neuroscience
Genetics (taste & flavour)
Rheology
Interfacial properties

Nutrition & Health (metabolic syndrome)

Biomedical

(biomaterials, dentistry, artificial saliva, disfunctions)

Care Products

(toothpaste, mouthwash)

Topics for Research Proposal

FOAM – SENSORY PERCEPTION MECHANISM

(Chemoreceptors – Mechanoreceptors)

FOAM – TASTE/FLAVOUR INTERACTION

INTER-INDIVIDUAL VARIABILITY

(Perception/Preference)

NEW FOAMED-PRODUCTS

Thank you for your attention

