Interaction of the laser beam sent in the equatorial plane of the droplet and focused in its geometrical centre Droplet volume 3µl; E_2 =0.4mJ. λ = 532 nm Recording speed: 10kfr/sec. The time intervals 0.2ms between some pictures indicate that frames were skipped . The inhomogeneities produce stimulated Brillouin scattering (SBS) and stimulated Rayleigh scattering induced by electrostriction. The spontaneous Brillouin and Rayleigh scattering are not dominant. The threshold beam power to produce SBS: $$P_{th} = (G_{th} \cdot \lambda)/2g$$ G_{th} = 25, gain parameter at threshold, λ = 532 nm and the SBS gain factor g = 0.048m/GW. P_{th} = 13.85KW < beam power at 1mJ. Interaction of the laser beam incident on the droplet in the equatorial plane, on front surface Droplet volume 4μ l; $E_2 = 0.4 \text{mJ}$. #### Laser beam incident on the droplet in the equatorial plane and focused on its back face Droplet volume 3μ l; $E_2 = 0.4 \text{mJ}$. # Laser beam incident on the droplet in the equatorial plane, on the lateral face of it, located in front of the camera ns. 17 Droplet volume 3.5 μ l; E_3 = 0.7 μ J. ### Laser beam interaction with the droplet, when sent horizontally, at the South Pole of it Droplet volume 3.5 μ l; E₃ =0.7mJ. #### **Resonant interaction** R6G solutions in distilled water at 10⁻³M concentration Effects produced at resonant interaction on the droplet containing R6G at 10^{-3} M in distilled water by the laser beam sent in its equatorial plane and focused in its centre . E₁ = 0.25mJ. Effects at resonant interaction on the droplet containing R6G at 10^{-3} M in distilled water by the laser beam sent in the droplet's equatorial plane focused on its front surface . $E_3 = 0.7$ mJ. Effects produced on the droplet containing R6G at 10^{-3} M in distilled water by the laser beam sent in the equatorial plane and focused on the front surface of the droplet. E_4 =1mJ.